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A Boussinesq-type model is derived which is accurate to O(kh)4 and which retains the
full representation of the fluid kinematics in nonlinear surface boundary condition
terms, by not assuming weak nonlinearity. The model is derived for a horizontal bot-
tom, and is based explicitly on a fourth-order polynomial representation of the vertical
dependence of the velocity potential. In order to achieve a (4,4) Padé representation of
the dispersion relationship, a new dependent variable is defined as a weighted average
of the velocity potential at two distinct water depths. The representation of internal
kinematics is greatly improved over existing O(kh)2 approximations, especially in the
intermediate to deep water range. The model equations are first examined for their
ability to represent weakly nonlinear wave evolution in intermediate depth. Using a
Stokes-like expansion in powers of wave amplitude over water depth, we examine
the bound second harmonics in a random sea as well as nonlinear dispersion and
stability effects in the nonlinear Schrödinger equation for a narrow-banded sea state.
We then examine numerical properties of solitary wave solutions in shallow water,
and compare model performance to the full solution of Tanaka (1986) as well as the
level 1, 2 and 3 solutions of Shields & Webster (1988).

1. Introduction
Important progress has been made in variable-depth Boussinesq-type models since

the development of the more-or-less standard model of Peregrine (1967), which
represents a consistent representation of an arbitrary irregular sea state correct to
first order in relative wave amplitude δ = a/h and second order in inverse relative
wavelength µ = kh, with O(δ) = O(µ2) � 1. Madsen, Murray & Sørensen (1991)
and Madsen & Sørensen (1992) introduced a rearrangement of dispersive terms in
the model equations in order to improve linear dispersion properties. By redefining
the dependent variable, Nwogu (1993) achieved the same improvement. Schäffer &
Madsen (1995b) generalized Nwogu’s idea of redefining the dependent variable in
Boussinesq models. Wei et al. (1995) used Nwogu’s approach to derive a Boussinesq-
type model (referred to henceforth as the WKGS model) without the weak nonlinearity
restriction. Various authors (see, for example, Chen et al. 1999 and Madsen, Sørensen
& Schäffer 1997) have demonstrated the utility of various O(µ2) approximations in
the prediction of nearshore wave transformation, surfzone wavebreaking and runup,
and the modelling of wave-induced circulation.
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Numerical computations indicate that O(µ2) models compare very well with solu-
tions of the full potential problem over the range of relevant coastal water depths,
except for some discrepancies in the velocity profiles in nearly-breaking waves. These
inaccuracies in the prediction of vertical profiles in existing Boussinesq-type models
are due to the fact that they assume the velocity profiles to be second-order poly-
nomials in the vertical coordinate z. Dingemans (1973) was the first to introduce
O(µ4) terms into Boussinesq equations. Other authors, employing rearrangements of
terms in models based on quadratic-over-depth flow kinematics, have achieved a (4,4)
Padé dispersion relationship in Boussinesq-type models. Those include Madsen et al.
(1996), Schäffer & Madsen (1995a, b), and Schröter, Mayerle & Zielke (1994).

In this paper, we derive a fourth-order Boussinesq model in which the velocity
potential is approximated by a fourth-order polynomial in z. The model here is
derived for a horizontal bottom; an extension to variable depth, an accompanying
numerical scheme and various tests against laboratory data are detailed separately in
Gobbi & Kirby (1999). A new dependent variable is defined as the weighted average
of the velocity potential at two different elevations in the water column, and the
weight and positions are chosen to give the very accurate (4,4) Padé approximant of
the exact linear dispersion relationship as observed by Witting (1984). The resulting
model is first tested for its apparent ability to correctly represent weakly nonlinear
wave properties in intermediate water depth. This problem is pursued using a Stokes
expansion in powers of δ for arbitrary values of µ. Results at second and third order
are examined in comparison to results from the Stokes solution for the full boundary
value problem. We then examine numerical solutions of the present model and the
WKGS model for the case of solitary waves on water of uniform depth. Results are
compared to the full solution of Tanaka (1986) as well as to the first three levels of
the Green & Naghdi type formulation of Shields & Webster (1988), denoted here by
GN1, GN2 and GN3.

2. Derivation of the O(µ4) model
The full boundary value problem for potential flow is given in terms of non-

dimensional variables by

φzz + µ2∇2φ = 0, −h 6 z 6 δη, (1)

φz + µ2∇h · ∇φ = 0, z = −h, (2)

η + φt + 1
2
δ

[
(∇φ)2 +

1

µ2
(φz)

2

]
= 0, z = δη, (3)

ηt + δ∇φ · ∇η − 1

µ2
φz = 0, z = δη. (4)

Here, x and y are the horizontal coordinates scaled by a representative wavenumber
k0 = 2π/L0, z is the vertical coordinate starting at the still water level and pointing
upwards and h is the water depth, both scaled by a typical depth h0. η is the water
surface displacement scaled by a representative amplitude a. ∇ denotes a gradient in
horizontal coordinates (x, y). Two dimensionless parameters are apparent: δ = a/h0

and µ2 = (k0h0)
2. Time t is scaled by (k0(gh0)

1/2)−1, and φ, the velocity potential, is
scaled by δh0(gh0)

1/2. We integrate (1) over the water column and use (2) and (4) to
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obtain a mass conservation equation

ηt + ∇ ·M = 0, M ≡
∫ δη

−h
∇φ dz. (5)

We restrict our attention here to a derivation of model equations for waves over
a flat bottom of depth h0; a corresponding variable-depth version of the model has
been derived and applied to various examples by Gobbi & Kirby (1999). We assume a
fourth-order polynomial approximation for φ and choose the coefficients to satisfy the
bottom boundary condition (2) (with ∇h = 0) and Laplace’s equation (1), retaining
terms up O(µ4). The approximate potential is given by Mei (1989) as

φ = φ0 − µ2(1 + z)2

2
∇2φ0 +

µ4(1 + z)4

24
∇2∇2φ0 + O(µ6), (6)

where φ0 is the velocity potential at the bottom. Commensurate with the extension
of the velocity potential to O(µ4), we seek to derive a set of model equations having a
corresponding dispersion relation in the form of a (4,4) Padé approximant, given by

tanh µ

µ
=

1 + (1/9)µ2 + (1/945)µ4

1 + (4/9)µ2 + (1/63)µ4
+ O(µ10). (7)

For the case of approximations retaining terms to O(µ2), the goal of obtaining the
corresponding (2,2) Padé approximant may be achieved by redefining the velocity
potential in terms of the value of the potential at a normalized elevation zα =
[(1 + 2α)1/2 − 1]; α = − 2

5
and using the resulting reference value φα as the dependent

variable; see Nwogu (1993), Chen & Liu (1995) or Kirby (1997). Nwogu further
introduced a least-squares procedure aimed at minimizing errors in predicted phase
speed over a range of µ-values, giving a value of α = −0.39 instead of the Padé result.
Nwogu’s least-square result is used as the basis for determination of the O(µ2) results
shown subsequently.

The procedure of Nwogu is not adequate for obtaining the (4,4) Padé dispersion
relation at O(µ4) which we desire here, as discussed by Dingemans (1997) and
illustrated in Appendix A. Instead, we define a new dependent variable

φ̃ ≡ βφa + (1− β)φb, (8)

where φa and φb are the velocity potentials at elevations z = za and z = zb, and β is
a weighting parameter. φ̃ may be written in terms of φ0 using (6) to obtain

φ̃ = φ0 − 1
2
µ2B∇2φ0 + 1

24
µ4D∇2∇2φ0 + O(µ6), (9)

where

B ≡ β(1 + za)
2 + (1− β)(1 + zb)

2, (10)

D ≡ β(1 + za)
4 + (1− β)(1 + zb)

4. (11)

Inverting (9) gives a formula for φ0 in terms of φ̃, which in turn is substituted into
(6) to get an approximation to the full velocity potential in terms of φ̃,

φ = φ̃+ 1
2
µ2
{
B − (1 + z)2

}∇2φ̃

+ 1
4
µ4
{
B2 − B(1 + z)2 − 1

6
D + 1

6
(1 + z)4

}∇2∇2φ̃+ O(µ6). (12)

Defining the total depth H = 1 + δη, and substituting (12) into (5) gives a mass flux
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conservation equation for φ̃ and η,

ηt + ∇ · {H [∇φ̃+ 1
2
µ2(B − 1

3
H2)∇(∇2φ̃)

+ 1
4
µ4(B2 − B 1

3
H2 − 1

6
D + 1

30
H4)∇(∇2∇2φ̃)

]}
= O(µ6). (13)

Next we substitute (12) into (3) to obtain an approximate Bernoulli equation,

η + φ̃t + 1
2
µ2{B −H2}∇2φ̃t

+ 1
4
µ4{B2 − BH2 − 1

6
D + 1

6
H4}∇2∇2φ̃t

+ 1
2
δ
[
(∇φ̃)2 + µ2{B −H2}∇φ̃ · ∇(∇2φ̃) + µ2H2(∇2φ̃)2

+ 1
2
µ4{B2 − BH2 − 1

6
D + 1

6
H4}∇φ̃ · ∇(∇2∇2φ̃)

+ 1
4
µ4{B2 − 2BH2 +H4}{∇(∇2φ̃)}2

+ µ4{BH2 − 1
3
H4}(∇2φ̃)(∇2∇2φ̃)

]
= O(µ6). (14)

The model (13) and (14) is referred to subsequently as FN4, for fully-nonlinear fourth
order. If we neglect O(µ4) terms from (13) and (14) and set β = 1, we recover the
WKGS model with α being related to B by

B = 2α+ 1. (15)

If, in addition, we neglect terms of O(δµ2) or higher, we recover Nwogu’s model in
the velocity potential form given by Chen & Liu (1995).

A higher-order model in the standard Boussinesq approximation may be obtained
by assuming δ/µ2 = O(1) and retaining terms of O(δµ2, µ4) to obtain the Boussinesq
model

ηt + ∇ · {[H∇φ̃ + 1
2
µ2(BH − 1

3
(1 + 3δη))∇(∇2φ̃)

+ 1
4
µ4(B2 − 1

3
B − 1

6
D + 1

30
)∇(∇2∇2φ̃)

]}
= O(µ6), (16)

η + φ̃t + 1
2
µ2[B − (1 + δη)]∇2φ̃t + 1

4
µ4(B2 − B − 1

6
D + 1

6
)∇2∇2φ̃t

+ 1
2
δ
[
(∇φ̃)2 + µ2(B − 1)∇φ̃ · ∇(∇2φ̃) + µ2(∇2φ̃)2

]
= O(µ6, δµ4). (17)

3. Linear model properties
The correct representation of linearized behaviour is a crucial part of ensuring that

extended Boussinesq models can be used in relatively deep water. Previous model
extensions to the level of (2,2) Padé approximants have allowed models to accurately
predict propagation speeds over essentially the entire range of intermediate water
depths. However, as will be apparent below, the same models cannot be construed
to be accurate predictors of fluid kinematics over the same range of depths, as
the quadratic vertical profile associated with standard Boussinesq models is too
restrictive to represent the kinematics correctly for µ values of O(1). More recent
extensions of these same formulations (Schäffer & Madsen 1995a) to (4,4) Padé
dispersion extend the propagation range but do nothing to alleviate the restrictions in
kinematic prediction associated with the quadratic profile, since the model variables
are never related to an assumed form of the potential which retains terms to O(µ4).
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In contrast, the present model is based initially on a potential which retains this level
of information, and the coefficients of that potential may be determined from the
spatial structure of the model solution.

In this section, we investigate the properties of the linearization of the model
derived in § 2. The accuracy of the (4,4) Padé approximant is demonstrated and, more
importantly, we demonstrate the level of correction in kinematic predictions achieved
by moving to a fourth-order polynomial dependence in z.

3.1. Linear dispersion properties

Neglecting all terms containing δ in (13) and (14) gives a linear mass conservation
equation

ηt + ∇2φ̃− µ2C1∇2∇2φ̃+ µ4C2∇2∇2∇2φ̃ = 0, (18)

and Bernoulli equation

η + φ̃t − µ2C3∇2φ̃t + µ4C4∇2∇2φ̃t = 0, (19)

where

C1 ≡ − 1
2
(B − 1

3
), (20)

C2 ≡ 1
4
(B2 − 1

3
B − 1

6
D + 1

30
), (21)

C3 ≡ − 1
2
(B − 1), (22)

C4 ≡ 1
4
(B2 − B − 1

6
D + 1

6
). (23)

In order to analyse the dispersion properties of these equations, we assume the
following general solution:

η = aei(x−ωt), φ̃ = bei(x−ωt), (24)

where ω is the angular frequency non-dimensionalized by k0(gh0)
1/2, a and b are

amplitudes, and i =
√−1. Substituting (24) into (18) and (19) we obtain the linear

dispersion relationship for the model,

ω2 =
1 + C1µ

2 + C2µ
4

1 + C3µ2 + C4µ4
. (25)

Choosing C1−C4 to force (25) to correspond to the (4,4) Padé approximant (7) gives
B = 1/9 and D = 5/189. We then solve for parameters β, za, and zb. Since we have
three unknowns but only two equations defining B and D, there is an infinite number
of solutions that give the desired values of B and D. However, an arbitrary choice
of β can give imaginary values of za or zb or values lying outside the fluid domain,
causing the related potential values to lose physical significance. The relationship
between β, za, and zb is given by

za =

[
1

9
−
{

8β

567(1− β)

}1/2

+

{
8

567β(1− β)

}1/2
]1/2

− 1, (26)

zb =

[
1

9
−
{

8β

567(1− β)

}1/2
]1/2

− 1. (27)

Figure 1 shows a plot of the real part of za and zb as given by (27). A choice of
values of β between 0.018 and 0.467 will cause both za and zb to be real values lying
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Figure 1. Values of za(β) (solid), zb(β) (dash–dot) as a function of weighting factor β,
corresponding to the (4,4) Padé approximant dispersion relation.

inside the water column. For the case of constant water depth, the model coefficients
are fixed by the choice of B and D and thus the further choice of β has no influence
on the model equations. For the case of variable depth the value of β could be
used to optimize depth-dependent properties such as linear shoaling. However, actual
wave calculations showed that even the variable-depth version of the model (Gobbi,
Kennedy & Kirby 1998) was not very sensitive to choices of the parameter β.

Figure 2 shows a comparison of the ratio of the model phase speed to Airy’s exact
linear solution for the standard O(µ2) Boussinesq theory based on depth-averaged
velocity (with normalized phase speed C given by C2 = (1 + µ2/3)−1, Nwogu’s least-
square formulation based on velocity at zα, and the present model with a (4,4)
Padé dispersion relationship. It is clear that the present model has improved linear
dispersion properties over Nwogu’s model and closely reproduces the exact solution
through intermediate to deep water. Similarly, the linear group velocity, defined as
Cg = ∂ω/∂k, is shown in figure 3, and the improvement over Nwogu’s result is even
more evident.

As an alternative procedure to choosing the (4,4) Padé approximant as a basis for
determining the dispersion relation, one could compute values for β, za, and zb to
minimize the errors in the linear phase speed and group velocity over some depth
range. This was the procedure used by Nwogu to obtain his optimized parameter
α = −0.39. However, the authors found that the dispersion relation error surface in
the neighbourhood of coefficient values corresponding to the (4,4) Padé approximant
is extremely flat, and any parameter optimization over a normal water depth range
would result in minor improvement in overall model properties.

3.2. Internal kinematics

The internal kinematics of the present model can be obtained from (12) and (24).
Note that O(µ2) model results can be obtained from the present model as explained
at the end of § 2. Based on periodic solutions of the form (24), we define a function
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Figure 2. Ratio of model linear phase speed to Airy’s exact linear solution. Standard Boussinesq
(dash–dot), Nwogu, α = −0.39 (dot), present (4,4) Padé (dash).
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Figure 3. Ratio of model linear group velocity to Airy’s exact linear solution. Nwogu, α = −0.39
(dot), present (4,4) Padé (dash).

f1(z) as the the velocity potential (or any horizontal velocity component) normalized
by its value at position z = 0:

f1(z) =
1− 1

2
µ2[B − (1 + z)2] + 1

4
µ4[B2 − B(1 + z)2 − 1

6
D + 1

6
(1 + z)4]

1− 1
2
µ2[B − 1] + 1

4
µ4[B2 − B − 1

6
D + 1

6
]

. (28)

The vertical velocity component w can be obtained by differentiating (12) with
respect to z. Similarly to f1, a vertical velocity profile function can be obtained by
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defining f2(z) = w(z)/w(0):

f2(z) =
µ2[(1 + z)] + 1

2
µ4[−B(1 + z) + 1

3
(1 + z)3]

µ2 + 1
2
µ4[−B + 1

3
]

. (29)

Figure 4 shows comparisons of f1(z) between the exact linear solution f1(z) =
cosh [µ(1 + z)]/ cosh [µ], the O(µ2) model and the present O(µ4) model for various
values of relative water depth µ. Notice that for moderately shallow water, the two
models reproduce the exact solution quite well. As µ increases, the velocity profile
predicted by O(µ2) models (exemplified here by the Nwogu-type model) start to
deviate strongly from the exact solution, developing a flow reversal near the bottom
at µ =

√
10 ≈ 3.16. The present model remains very accurate over this range of depths.

In deeper water (indeed, well beyond a nominal deep-water limit of µ = π), the present
model starts to deviate from the exact solution. First, an inflection point develops at
the bottom at µ2 = 18 (µ ≈ 4.24). For higher values of µ, the inflection point moves
up in the water column. At the same time, a vertical tangent at an elevation higher
than the inflection point occurs. The first flow reversal occurs at the point where the
value of f1 at the vertical tangent falls to zero. This is at µ2 = 18 + 9

√
2 (µ ≈ 5.54) at

an elevation given by (1 + z)2 =
√

2/(6 + 3
√

2), or z ≈ −0.628.
The exact linear solution for f2(z), which describes the vertical profile of vertical

velocity, is given by f2(z) = µ sinh [µ(1 + z)]/ cosh [µ]. Figure 5 shows results similar
to figure 4 for f2(z). All O(µ2) models have a linear vertical profile for w, which is a
poor representation of the solution in intermediate to deep water. The present model
stays close to the exact solution for a wide range of µ. A reversal of the vertical
flow starts to appear at the inflection point in the horizontal velocity profile, given by
(1 + z)2 = (1− 18/µ2)/9, and occurs first at µ ≈ 4.24, as indicated above.

Finally, we consider the aspect ratio f3(µ) = w/u of the wave orbital motion at
z = 0, as predicted by the model. Figure 6 shows the ratio of model f3 to the exact
linear solution f3(µ) = tanh (µ) for the present O(µ4) model and for the O(µ2) model.
The approximate expression for f3 is given by

f3(µ) =
w(z = 0)

u(z = 0)
=

µ+ 1
2
µ3[−B + 1

3
]

1− 1
2
µ2[B − 1] + 1

4
µ4[B2 − B − 1

6
D + 1

6
]
. (30)

Again, the present model predicts the aspect ratio better than the O(µ2) model, and
with reasonable accuracy over the range 0 6 µ 6 3.

4. Nonlinear properties in intermediate water depth
In the previous sections we have seen that the proposed model has excellent linear

dispersion properties as well as greatly improved representation of the internal flow
kinematics. It is useful to analyse some of the nonlinear properties of the model by
using analytical tools such as Stokes-type asymptotic expansions and multiple scales
expansions. Since these types of analysis have been extensively applied and studied for
the full boundary value problem for the velocity potential, we can obtain an idea of
how well the nonlinear version of the present model would perform in intermediate
water depth by comparing some of its nonlinear properties with those of the full
problem and also with the WKGS and Nwogu models. In the following subsections
we investigate O(δ) nonlinear interactions in a random sea, and O(δ2) evolution of a
narrow-banded wave train governed by the cubic Schrödinger equation.
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Figure 4. Normalized vertical profile of linear horizontal velocity for four values of µ. Exact linear
solution (solid), O(µ2) approximate solution (dot), present O(µ4) approximate solution (dash).
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Figure 5. Normalized vertical profile of linear vertical velocity for four values of µ. Exact linear
solution (solid), O(µ2) approximate solution (dot), present O(µ4) approximate solution (dash).

4.1. Second-order random sea

We first examine the generation of super- and subharmonics by second-order Stokes-
type interactions. It is well known that in intermediate and deep water the first
nonlinear correction of a linear wave solution is a set of bound waves, also called
superharmonics (resulting from sum-wave interactions) and subharmonics (resulting



190 M. F. Gobbi, J. T. Kirby and G. Wei

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5
µ

6

f 
3

Figure 6. Ratio of approximate values for the aspect ratio f3 = w(0)/u(0) to the exact linear
solution. O(µ2) approximate solution (dash–dot), present O(µ4) approximate solution (dash).

from difference-wave interactions) (Hasselmann 1962). These bound waves are pro-
portional to products of the amplitudes of solutions to the linear equations. The
constants of proportionality, which are functions of the local depth, will be referred
to as transfer coefficients. Nwogu (1993) has investigated the generation of these
bound waves in his extended Boussinesq model and found qualitatively reasonable
agreement with Stokes’ theory. Madsen & Sørensen (1993) have found similar results.
Kirby & Wei (1994) extended Nwogu’s model to a fully nonlinear formulation and
found that the retention of terms proportional to δµ2 (which are neglected in Nwogu’s
model and the standard Boussinesq model by assumption) is essential to a prediction
of the transfer coefficients, which is to the order of retained dispersive terms in the
original model equations. Here, we derive the transfer coefficients for the present
model and compare to results from previous models.

We proceed by introducing the perturbation expansion

η = η0 + δη1 + δ2η2 + · · · , (31)

φ̃ = φ0 + δφ1 + δ2φ2 + · · · , (32)

into (13) and (14), and ordering the equations by powers of δ. At each order O(δn)
we obtain

ηnt + L1φn = Fn, (33)

ηn + L2φnt = Gn, (34)

where L1 and L2 are the linear operators

L1 ≡ ∇2 + 1
2
µ2(B − 1

3
)∇2∇2 + 1

4
µ4(B2 − 1

3
B − 1

6
D + 1

30
)∇2∇2∇2, (35)

L2 ≡ 1 + 1
2
µ2(B − 1)∇2 + 1

4
µ4(B2 − B − 1

6
D + 1

6
)∇2∇2, (36)

and the forcing terms for n = 0, 1, and 2 are given by

F0 ≡ 0, (37)
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G0 ≡ 0, (38)

F1 ≡ −∇ · (η0∇φ0)− 1
2
µ2(B − 1)∇ · {η0∇(∇2φ0)}

− 1
4
µ4(B2 − B − 1

6
D + 1

6
)∇ · {η0∇(∇2∇2φ0)}, (39)

G1 ≡ − 1
2
(∇φ0)

2 + 1
2
µ2
{

2η0∇2φ0t − (B − 1)∇φ0 · ∇(∇2φ0) + (∇2φ0)
2
}

− 1
4
µ4
{

( 2
3
− 2B)η0∇2∇2φ0t + (B2 − B − 1

6
D + 1

6
)∇φ0 · ∇(∇2∇2φ0)

+ 1
2
(B − 1)2∇(∇2φ0) · ∇(∇2φ0) + 2(B − 1

3
)(∇2φ0)(∇2∇2φ0)

}
, (40)

F2 ≡ −∇ · (η1∇φ0)− ∇ · (η0∇φ1)

− 1
2
µ2
[
(B − 1)[∇ · {η1∇(∇2φ0)}+ ∇ · {η0∇(∇2φ1)}]− ∇ · {η2

0∇(∇2φ0)}]
− 1

4
µ4
[
(B2 − B − 1

6
D + 1

6
)
[∇ · {η1∇(∇2∇2φ0)}+ ∇ · {η0∇(∇2∇2φ1)}]

− (B − 1
3
)∇2 · {η2

0∇(∇2∇2φ0)}] , (41)

G2 ≡ −∇φ1 · ∇φ0 − 1
2
µ2
{− 2[η1∇2φ0t + η0∇2φ1t]

+(B − 1)[∇φ0 · ∇(∇2φ1) + ∇φ1 · ∇(∇2φ0)]

+2∇2φ0∇2φ1 − η2
0∇2φ0t − 2η0∇φ0 · ∇(∇2φ0) + 2η0(∇2φ0)

2
}

− 1
4
µ4
{− 2(B − 1

3
)[η1∇2∇2φ0t + η0∇2∇2φ1t]

+(B2 − B − 1
6
D + 1

6
)[∇φ1 · ∇(∇2∇2φ0) + ∇φ0 · ∇(∇2∇2φ1)]

+(B − 1)2∇(∇2φ1) · ∇(∇2φ0)

+2(B − 1
3
)[(∇2φ1)(∇2∇2φ0) + (∇2φ0)(∇2∇2φ1)]

−(B − 1)η2
0∇2∇2φ0t − 2(B − 1

3
)η0∇φ0 · ∇(∇2∇2φ0)

−2(B − 1)η0∇(∇2φ0) · ∇(∇2φ0) + 4(B − 2
3
)η0(∇2φ0)(∇2∇2φ0)

}
. (42)

We now assume the following random sea as the solution to the O(1) problem:

η0 =
∑
n

an cosψn, φ0 =
∑
n

bn sinψn, (43)

where an and bn are non-dimensional amplitudes of the functions η0 and φ0, ψn =
kn · x − ωnt, kn is the n-component wavenumber vector non-dimensionalized by k0,
x is the horizontal coordinates vector non-dimensionalized by 1/k0, ωn is the n-
component angular frequency non-dimensionalized by k0(gh0)

1/2. Substitution of (43)
into the O(1) set of equations gives a set of n linear dispersion relationships between
ωn and kn = |kn|:

ω2
n = k2

n

1− 1
2
(B − 1

3
)µ2k2

n + 1
4
(B2 − 1

3
B − 1

6
D + 1

30
)µ4k4

n

1− 1
2
(B − 1)µ2k2

n + 1
4
(B2 − B − 1

6
D + 1

6
)µ4k4

n

. (44)
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We also find a relationship between an and bn given by:

bn =
ωn

knKn

an, Kn = kn
{

1− 1
2
µ2k2

n(B − 1
3
) + 1

4
µ4k4

n(B
2 − 1

3
B − 1

6
D + 1

30
)
}
. (45)

Following the standard perturbation technique, we substitute the O(1) solution (43)
into the right-hand side of the O(δ) equations (34) to find the forcing of the O(δ)
problem. The forcings F1 and G1 in the mass and dynamic equations (34) respectively
are

F1 =
1

4

∑
l

∑
m

amal
{F+

ml sin (φl + φm) +F−ml sin (φl − φm)
}
, (46)

G1 =
1

4

∑
l

∑
m

amal
{G+

ml cos (φl + φm) + G−ml cos (φl − φm)
}
, (47)

where

F±ml =
ωmk

2
l ± ωlk2

m + (ωl ± ωm)(kl · km)

ωlωm
, (48)

G±ml =
1

klkmKlKm

[− ωlωm(kl · km) + µ2
{
ω2
mk

2
mklKl

+ω2
l k

2
l kmKm + 1

2
(B − 1)ωlωm(k2

l + k2
m)(kl · km)± ωlωmk2

l k
2
m

}
+µ4

{− 1
2

(
B − 1

3

) (
ω2
l k

4
l kmKm + ω2

mk
4
mklKl

)
− 1

4

(
B2 − B − 1

6
D + 1

6

)
(kl · km)ωlωm(k4

l + k4
m)

− 1
4
(B − 1)2ωlωmk

2
l k

2
m(kl · km)∓ 1

2

(
B − 1

3

)
ωmωlk

2
mk

2
l (k

2
m + k2

l )
}]
. (49)

Equation (48) is identical to the full Stokes’ theory result, except for the approximation
inherent in the (4,4) Padé dispersion relationship. Equation (49) can be rearranged
within the level of approximation of the present model to

G±ml =
−kl · km + µ2

{
ωlωm(ω2

l + ω2
m)± ω2

l ω
2
m

}
ωlωm

+ O(µ6), (50)

which is, again, formally the same as the full Stokes’ theory result but with an
approximate dispersion relationship.

The forced solution for η1 can be obtained by solving (34) and is given by

η1 =
∑
l

∑
m

amal
{H+

ml cos (φl + φm) +H−
ml cos (φl − φm)

}
, (51)

where

H±
ml =

ω±mlF±ml − k±mlG±mlT±ml
4
[
(ω±ml)2 − k±mlT±ml

] , (52)

T±ml ≡ k±ml
1− 1

2
µ2(B − 1

3
)(k±ml)2 + 1

4
µ4(B2 − 1

3
B − 1

6
D + 1

30
)(k±ml)4

1− 1
2
µ2(B − 1)(k±ml)2 + 1

4
µ4(B2 − B − 1

6
D + 1

6
)(k±ml)4

, (53)

k±ml = |kl ± km|, ω±ml = ωl ± ωm. (54)

H+
ml , H−

ml are respectively the super- and subharmonic transfer coefficients of the
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interaction between the (l, m) pair of waves. Figures 7 and 8 show comparisons
of the ratio of H±

ml to Stokes’ solution, for Nwogu’s model, the WKGS model,
and the present model, for the self-interaction between two identical waves, with
ωm = ωl, km = kl . Note that the poor representation of these coefficients at small µ in
Nwogu’s model is due to the assumption of weak nonlinearity, as discussed by Kirby
& Wei (1994). The present model predicts superharmonic amplitudes very accurately
over a wide range of water depths. The asymptotic representation of subharmonic
amplitudes is also more accurate than in previous models, but the new solution
deviates more rapidly from the exact solution than do the previous results.

4.2. Third-order nonlinear interactions: Schrödinger equation

We now extend our analysis to third-order interactions by deriving a cubic Schrödinger
equation (which governs the evolution of a wave envelope associated with the propa-
gation of a narrow-banded-spectrum wave train) for the present model and comparing
some of its properties with the full boundary value problem, and also with the WKGS
fully nonlinear second-order model. The detailed derivation of the equation for the
present model will not be shown since it is very similar to the derivation for the
full boundary value problem, which can be found in Mei (1989), and can be done
using a standard WKB multiple scales approach. We now outline the derivation. A
narrow-banded wave train with carrier wavenumber k0 and angular frequency ω is
assumed to be propagating mainly in the x-direction. The time and space variables
are split into fast and slow contributions

t = t′ + δt′ + δ2t′ = t′ + T1 + T2, (55)

x = x′ + δx′ + δ2x′ = x′ +X1 +X2, (56)

y = δy′ + δ2y′ = Y1 + Y2. (57)
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Notice that y has only slow scale contributions. We expand the dependent variables
as

η = δη1 + δ2η2 + δ3η3, (58)

φ̃ = δφ1 + δ2φ2 + δ3φ3. (59)

We then substitute (57) and (59) into (13) and (14), and order the equations in a
manner analogous to what was done in the previous section. We assume the solution
to each order to be of the form

ηn =

n∑
m=−n

ηnm(X1, X2, Y1, Y2, T1, T2)e
im(x′−ωt′), (60)

φn =

n∑
m=−n

φnm(X1, X2, Y1, Y2, T1, T2)e
im(x′−ωt′). (61)

We then seek an equation for the evolution of the wave envelope in X1 and T1

by applying solvability conditions at each order. After some algebra, a system of
equations governing the wave-induced mean flow and the short-wave envelope is
found. The equation for the slowly-varying mean flow is given by

−φ10T1T1
+ (φ10X1X1

+ φ10Y1Y1
) =

δ

2ωµ
(|A|2X1

+ S0|A|2T1
), (62)

where

S0 =
−ω3[1− C1µ2][1 + (1 + 2C3)µ

2 + (2C4 + C2
3 + 2C1)µ

4]

2[1 + C1µ2 + C2µ4]
. (63)



A fully nonlinear Boussinesq model for surface waves. Part 2 195

0.8

0.4

0

0 1 2 3 4 5
µ

6

1.2

–0.4

ω
kk

 /ω
kk

, A
ir

y

Figure 9. Ratio of approximate ∂2ω/∂k2 to exact linear solution result.
Nwogu, α = −0.39 (dot), present (dash).

The cubic Schrödinger equation for the short-wave envelope is given by

AT2
+ CgAX2

− 1
2
iω′′AX1X1

− 1
2
iCgAY1Y1

+ iδ2µ2σ1|A|2A

+ iδµ

{
φ10X1

+
1 + C3µ

2 + C4µ
4 − µ2ω2

(
1 + C1µ

2
)

2ω
(
1 + C3µ2 + C4µ4

) φ10T1

}
A = 0, (64)

where A = 2η11 is the envelope amplitude, ω′′ = ∂2ω/∂k2 (shown in comparison to
the full linear theory result in figure 9), and expressions for C1, C3, and C4 are given
above in (20)–(23). The coefficient σ1 is given in Appendix B for both the present
model and the full potential problem. Restricting attention to waves propagating in
the x-direction with no transverse variation (∂/∂Y1 ≡ 0), a final equation for the case
of modulated waves in the presence of a long wave locked to the wave disturbance
can be obtained after integration of (62) in a frame moving with the group velocity
and substitution in (64), and is given by

−iAτ − 1
2
ω′′Aξξ + δ2µ2σ|A|2A+ γ1(τ)A = 0, (65)

where τ = δT1, ξ = X1−CgT1, and γ1 is an arbitrary function of τ. The last term can

be absorbed into a new variable by the transformation A′ = Ai
∫
γ1 dτ. The coefficient σ

(illustrated in figure 10) is the sum of contributions from the wave–wave interactions
σ1 and wave–current interactions σ2, also given in Appendix B for the present model
as well as for the full potental problem.

For the case of an unmodulated wave train, with φ10 = UX1+gbT1 (U, b constants),
(64) can be used to obtain the frequency shift associated with amplitude dispersion.
The equation becomes

∂A

∂T2

+ iω2|A|2A = 0, (66)
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where

ω2 = σ1 +
δµ

|A|2
[
U +

1 + C3µ
2 + C4µ

4 − µ2ω2(1 + C1µ
2)

2ω(1 + C3µ2 + C4µ4)
gb

]
. (67)

The resulting solution is

A = a0e
−i(ω2a

2
0T2), (68)

where a0 = |A|. The leading-order solution for η is then

η1 = a0 cos (kx− ω̃t), (69)

where

ω̃ = ω + (δµ)2ω2a
2
0. (70)

Figure 11 shows a comparison of the ratio σ1 from the present model and from the
WKGS model to the Stokes’ solution to the full problem. Figure 12 shows a similar
comparison for σ2. For both quantities, the present model exhibits better asymptotic
behaviour for small µ-values. However, predictions begin to deviate from the full
theory for values of µ as low as 0.5, and, for large µ-values, results of the higher-order
(O(µ4)) theory deviate more rapidly from the full theory. Errors in the O(µ4) model
coefficients are on the order of 20% in the range 0 < µ < 3.

For the case of modulated wave trains, it has been shown (see Mei 1989) that the
Stokes wave train is unstable to long-wavelength modulations in situations where ω′′
and σ = σ1 + σ2 have different signs. For the full intermediate depth theory, it is
well known that the boundary between stability and instability occurs at µ = 1.36.
This boundary corresponds to a change in sign of σ from positive in deep water
to negative in shallow water, with ω′′ < 0 everywhere. For the present theories, the
expressions for ω′′ have sign changes at large values of µ, with the change occurring
near µ = 3.8 in the WKGS equations but far into the deep-water range for the present
theory, as shown in figure 9. These sign changes would indicate a false restabilization
of deep-water wave trains for the model equations being considered.
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Closer to shore, the present model’s prediction of σ (figure 10) shows a shift in
the zero-crossing of σ towards a somewhat shallower value close to µ = 1.2, whereas
the WKGS model results correspond to a shift to a somewhat deeper value near
µ = 1.67. This deviation would allow (for the O(µ4) theory) envelope instabilities to
persist into somewhat shallower depths than would be expected in the full theory.
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The magnitude of the deviation from the full theory is about the same for each order
of the approximation.

5. Solitary waves
The phenomenon known as the solitary wave consists of a limiting wave form with

a single crest which propagates in fairly shallow water of constant depth, and where
the nonlinear and dispersive effects counterbalance each other yielding a permanent-
form solution. In this section we study solitary waves solutions of the present fully
nonlinear O(µ4) FN4 model, and compare it to other models including extremely
accurate solutions of the full boundary value problem (Tanaka 1986), Green &
Naghdi (1976) (GN)-type models given by Shields & Webster (1988), and the WKGS
model.

Many authors have found approximate solutions for the solitary wave, including
the early works of Boussinesq (1871) and Korteweg & de Vries (1895). Fenton (1972)
developed a model based on a perturbation expansion around the basic shallow
water wave theory. His expansion includes terms up ninth order and, at the first three
orders, recovers the models of Boussinesq (1871), Laitone (1960), and Grimshaw
(1971). Longuet-Higgins & Fenton (1974) used conservation of integral quantities
such as mass and energy to arrive at extremely accurate relationships between several
solitary wave properties, such as the wave height, energy, mass, wave Froude number
Fr (non-dimensional wave speed), etc. They also proved that the solitary wave with
maximum wave height does not correspond to the one with maximum fluid velocity
at the crest, or maximum mass. More recently, in a study of the stability of solitary
waves, Tanaka (1986) developed an accurate solution scheme for the full boundary
value problem for solitary waves. Throughout this section we will use this solution as
the ‘exact’ solution in our comparisons. Shields & Webster (1988) studied the accuracy
of solitary wave properties of the first three levels of a Green–Naghdi-like model,
referred to hereafter as GN1, GN2, and GN3. An nth-level GN model approximates
the horizontal velocity by an (n − 1)th polynomial, and the vertical velocity by an
nth-order polynomial, and is thus fundamentally rotational. GN1 recovers the model
by Serre (1953), as shown by Kirby (1997). Shields & Webster (1988) derived a GN2
set of equations for unsteady flow over an uneven bottom, and a GN3 model for
one-dimensional steady flow over a flat bottom.

5.1. Linear asymptotic solution

At the tail of the solitary wave (away from the crest) the free-surface elevation η
is very small, and we expect that the linearized set of equations should describe the
shape of the wave with good accuracy. In a reference frame moving with the wave at
non-dimensional wave speed Fr = c/

√
gh, we can write the following boundary value

problem for the wave field far from the crest (located at x = 0) in (x, z):

∇2φ = 0, (71)

φx = −Fr, x→∞, (72)

φz = 0, z = −1, (73)

φz = −F2
r φxx , z = 0. (74)

The solution to the system above is

φ = K1e
2γx cos 2γ(1 + z)− Frx. (75)
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Substituting (75) into (74) gives

tan 2γ

2γ
= F2

r . (76)

The exact solution for the free-surface elevation η far from the crest is of the form

η = K2e
2γx. (77)

The parameter γ is referred to as the straining parameter, and (76) is directly related
to the exact dispersion relationship in linear wave theory.

For the present model, the two equations corresponding to the system (71)–(74), in
terms of the modified velocity variable ũ are

η = Fr(ũ− C3ũxx + C4ũxxxx ), (78)

Frη = (ũ− C1ũxx + C2ũxxxx ), (79)

where C1, C2, C3, C4 are defined in (20)–(23). We now assume the solution

ũ = e2γx. (80)

Substituting (80) into (78), (79), solving for 4γ2 and keeping the relevant root, we
obtain

4γ2 =
(C3Fr

2 − C1)− [(C3Fr
2 − C1)

2 + 4(1− Fr2)(C4Fr
2 − C2)

]1/2
2(C4Fr

2 − C1)
. (81)

The expressions for the relation between the straining parameter and the Froude
number for GN2 and GN3 (Shields 1986 and Shields & Webster 1988) are

2γ2 = 1
3
(52− 12F−2

r − 4
√

9F−4
r − 33F−2

r + 124), (82)

and

16F2
r γ

6 + 60(1− 9F2
r )γ4 − 20(39− 144F2

r )γ2 + 1575(1− F2
r ) = 0, (83)

respectively.
Figure 13 shows a comparison of the percentage error to the exact solution of

the transcendental equation (76) for γ, between the present model, Nwogu’s model,
GN2, and GN3. Although all models have relatively small errors, the present model
is much more accurate than all the others by at least an order of magnitude. Notice
that compared to GN2 and Nwogu’s model, the difference in the errors is of at least
five orders of magnitude.

5.2. Numerical properties of solitary waves

In this subsection, an extension of the numerical scheme of WKGS is used to compute
several approximate solitary wave solutions to the fully nonlinear models FN4 and
WKGS. Details of the numerical scheme may be found in Gobbi & Kirby (1999)
or Gobbi (1998). The initial condition used for the model was constructed from
the computer program by Tanaka (1986) in the following manner: for the smallest
computed wave with amplitude ηmax ≈ 0.2, η and ũ (uα in the case of WKGS) were
obtained from Tanaka’s exact solution and used as initial condition for FN4 and
WKGS. After the solution reached permanent form, it was multiplied by a factor
slightly larger than 1 (typically 1.05) and this re-scaled wave was used as the initial
condition for the next case. This procedure was repeated until the desired range
of solitary waves was covered, and proved to be more efficient than using Tanaka’s
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solution as the initial condition for all amplitudes. Since Tanaka’s and each consecutive
re-scaled initial condition do not satisfy the approximate equations, there is a transient
period while the solution is not a permanent-form solitary wave, but has a dispersive
tail of shorter waves left behind. Since these shorter waves travel with phase speeds
which are smaller than the ‘main wave’, eventually the tail is left far behind and
does not interfere with the solitary wave, which, at this point, can propagate with
permanent form. The time required for the solution to achieve a permanent-form
solitary wave depends on the initial condition. High-amplitude initial conditions will
reach permanent form more quickly, since the primary wave moves much faster than
the tail. Smaller-amplitude waves will have less amplitude dispersion and it will take
longer for the permanent-form solitary wave to separate from the tail. After each
solution reaches permanent form it is straightforward to obtain properties such as the
Froude number, velocity profiles, mass, energy, etc. No filtering was necessary during
these computations, although for higher waves the under-relaxation parameter had
to be as small as r = 0.08 for the solution to converge with error tolerance in the
iteration typically 10−12 6 Terr 6 10−9. For the permanent-form solitary waves we
used grid spacing ∆x = 0.1h for waves with amplitude 0 < ηmax < 0.4h, ∆x = 0.05h
for 0.4h < ηmax < 0.7h, and ∆x = 0.025h for ηmax > 0.7h, where h = 1. We used ∆t
such that the Courant number was always below 0.2 (for accuracy purposes).

We now present the following non-dimensional quantities for the FN4 model, where
the scales for the basic variables are x = x′h, z = z′h, t = t′/

√
g/h, u = u′

√
gh, and

the primes denote non-dimensional quantities. The primes in the formulas below are
dropped for the sake of notational clarity. The total mass of the solitary wave above
the still water level is given by

M =

∫ +∞

−∞
η dx. (84)
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The potential energy is

V =

∫ +∞

−∞
1
2
η2 dx. (85)

The kinetic energy is

K =
1

2

∫ +∞

−∞

∫ H

0

(u2 + w2) dζ dx, (86)

where ζ = (1 + z), H = 1 + δη,

u(ζ) = ũ+ 1
2
µ2(B − ζ2)ũxx + 1

4
µ4(B2 − Bζ2 − 1

6
D + 1

6
ζ4)ũxxxx , (87)

and

w(ζ) = µ2ζũx + µ4[( 1
2
Bζ + 1

6
ζ3)ũxxx ]. (88)

After substitution of (87) and (88) into (86) and retaining terms of up to O(µ4), we
obtain

K =
1

2

∫ +∞

−∞
H
{[
ũ2 + µ2(B − 1

3
H2)ũũxx

]
+ 1

2
µ4
[
(B − 1

3
H2)B − 1

6
(D − 1

5
H4)
]
ũũxxxx

+ 1
4
µ4(B2 − 2B 1

3
H2 + 1

5
H4)ũ2

xx + 1
3
µ4H2ũ2

x

}
dx. (89)

The integrals in x are computed using Bode’s rule, which is accurate to O(∆x6).
We define the quantity

ωs = 1− (uc − Fr)2, (90)

where uc is the particle velocity at the crest, computed from (87) by locating the
position of the crest in x and computing u(ζ = H) at that x location. As the wave
amplitude varies from 0 to its limiting value, in which uc = Fr , the parameter ωs goes
from 0 to 1.

The speed of each wave was computed by letting an already permanent-form
solution propagate over a distance of around 500 times the water depth, recording
the difference between the crest location xc before and after this interval dt and
computing

Fr =
dxc
dt
. (91)

The exact location of the wave crest could not be obtained directly from the
computations, since only by virtue of luck was the crest located exactly at one of
the grid points. The location of the crest was determined by fitting a fourth-order
polynomial to the free surface around the crest. The peak value and x location were
then computed using the fitted polynomial. We used this same approach to compute
ũ and its x-derivatives at and underneath the crest.

Figure 14 shows computations of the free-surface elevation of half of a solitary
wave with Fr = 1.266 for FN4, WKGS, GN1, GN2, GN3, and the exact solution.
The three GN models are plotted with dotted lines, with GN1 and GN2 marked with
labels. Notice that, of all models, GN3 has the best match with the exact solution.
FN4 is also fairly close to the exact solution, but WKGS strongly overpredicts the
wave height, and slightly underpredicts the tail. GN models tend to underpredict the
height and overpredict the tail. Figure 15 shows the same model comparisons as in
figure 14, except for GN1 and GN2 whose solutions were not available. In this case the
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Figure 14. Shape of solitary waves with fixed Fr = 1.266. Exact (full), FN4 (dash), WKGS
(dash–dot), GN1, GN2, GN3 (dot).

maximum wave height is kept constant for all models. Again, GN3 has the best shape
compared to the exact solution. The WKGS solution compares better with the exact
solution than in the previous case (Fr kept constant), but FN4 still compares better
with the exact solution than does WKGS. Notice also the difference in wave speed Fr
for each model. In figure 16 the vertical profiles of the horizontal velocity are shown
for the exact solution, FN4, and WKGS, for the waves shown in figure 14, and it can
be seen that the O(µ4) model has a more accurate kinematic representation than the
O(µ2) model, confirming what we have already shown for linear theory. Unfortunately
it was not possible to obtain GN vertical profiles, but it can be speculated that that
model would not be able to predict this property as accurately as the FN4, since it
assumes the horizontal velocity to be only a second-order polynomial.

Figure 17 shows the relationship between the speed and amplitude of a wide range
of solitary waves for several models. Notice that once again GN3 has the closest
solution to the exact one. FN4 slightly underpredicts the wave speed for a given
amplitude, whereas the deviation in WKGS is of an order of magnitude higher. GN2
and especially GN1 overpredict the wave speed throughout the range tested. It is
important to keep in mind that as the wave approaches the limiting value, the crest
becomes extremely sharp (with the limiting wave having a crest forming an angle of
120◦), which makes it difficult for the finite difference scheme of FN4 to resolve the
wave well near the crest, since the model has up to fifth-order derivatives in x.

Figure 18 shows computations of the parameter ωs as a function of the wave
speed. In this case, the FN4 model is the closest to the exact solution. This is not
surprising if one recalls that ωs is directly related to the horizontal fluid velocity at
the crest, and that FN4 has a fourth-order polynomial representation of the vertical
profile of the horizontal velocity, whereas, as already observed, only a second-order
polynomial is assumed in both GN3 and WKGS. In the next figures, GN solutions
were not available. Figures 19, 20, and 21 show plots of the mass, kinetic energy, and
potential energy of solitary waves against the wave speed, for the exact solution, FN4,



A fully nonlinear Boussinesq model for surface waves. Part 2 203

0.8

0.4

0.2

0 0.5 1.0 2.51.5 2.0 3.0

x

η

0.7

0.6

0.5

0.3

0.1

Figure 15. Shape of solitary waves with fixed amplitude ηmax = 0.65. Exact: Fr = 1.265 (full),
FN4: Fr = 1.262 (dash), WKGS: Fr = 1.245 (dash–dot), GN3: Fr = 1.266 (dot).

0.4

–0.2

0.40 0.45 0.50 0.650.55 0.60 0.70
u

0.6

0.2

0

z

–0.4

–0.6

–0.8

–1
0.75

Figure 16. Vertical profile of horizontal velocity for solitary waves with amplitude ηmax = 0.65.
Exact (full), FN4 (dash), WKGS (dash–dot).

and WKGS. All three properties show a similar behaviour to the wave amplitude
(figure 17) when plotted against Fr . In figure 19, WKGS agrees with the exact solution
better than FN4, but this is only a coincidence, as the overprediction of the wave
crest counterbalances the underprediction of the wave tail. A similar effect happens
with the kinetic energy (figure 20), where the plots of the two models coincidently
are on top of each other. The potential energy (figure 21) calculations for model
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Figure 18. ωs vs. phase speed for solitary waves. Exact (full), FN4 (dash), WKGS (dash–dot),
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FN4 has better agreement with the exact solution than it has with the WKGS model,
which confirms that the good agreement of WKGS in figure 17 was by virtue of luck,
since both the mass and the potential energy are only dependent on the free-surface
elevation.
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Figure 20. Kinetic energy vs. phase speed for solitary waves.
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5.3. Discussion

From figures 13, 14, 15, 17, 18, it is clear that the FN4 model has a better asymptotic
(linear) agreement with the exact solution than does GN3, but, with the exception
of the parameter ωs (related to the velocity at the crest of the wave), in all other
nonlinear properties, GN3 has a better agreement than FN4. This may seem some-
what surprising since GN3 approximates the horizontal velocity by a second-order
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polynomial (two orders lower than the FN4 model) and the vertical velocity by a
third-order polynomial (same as the FN4 model), and a more careful study is needed
to explain these discrepancies. Nevertheless, we make the following conjectures: FN4
satisfies mass conservation and all boundary conditions in an approximate sense,
consistent with the level of approximation of the velocity field. GN3 satisfies mass
conservation and the kinematic boundary conditions exactly. The coefficients for the
velocity variable in FN4 are derived such that the linear dispersion relationship is
extremely accurate, and no optimization is done considering that the free-surface
displacement is finite or including nonlinear terms. The advantage of this approach
is that the model is simple in the sense that there is only one dependent vari-
able describing the internal kinematics. For small-amplitude waves the FN4 model
is capable of extremely accurate results for a wide range of water depths, but as
the nonlinear terms become more important, and the actual free surface deviates
considerably from the still water level (for which the model was derived to per-
form its best), errors start to increase. On the other hand, GN3 is derived without
any a priori assumption about the relation between the values of model coefficients
for each term in the vertical polynomial representation. Rather, the coefficients for
the velocity polynomial are obtained through a minimization of the errors in the
momentum equation over the entire actual water depth, which is changing with time.
As a consequence, GN3 has three dependent variables describing each component of
the velocity field, besides the free-surface elevation. For a two-dimensional problem,
GN3 would have seven coupled evolution equations, whereas FN4 would have three.
The present model is thus simpler in structure than the GN3 approximation and
has been successfully implemented for the time-dependent case of irregular wave
trains.
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6. Conclusions
A Boussinesq-type model with O(1) nonlinearity and O(µ4) dispersion has been

proposed. By defining one of the dependent variables as the weighted average of the
velocity potential at two distinct water depths, it is possible to achieve an accurate (4,4)
Padé approximant for the linear dispersion relationship. A major improvement over
the existing second-order models has been found in the prediction of the linear internal
flow kinematics. A perturbation approach was carried out to analyse random wave
second-order nonlinear interactions and it has been shown that the present model
predicts very well the transfer coefficients of super- and subharmonic generation over
a wide range of water depths. A cubic nonlinear Schrödinger equation governing the
propagation of the wave envelope was obtained by a standard WKB perturbation
multiple scales approach and its coefficients were compared to those of the full model
as well as of the WKGS O(µ2) model. The present model’s cubic term coefficient
deviates from the prediction of the full Stokes theory, moving the transition from
unstable behaviour in intermediate depth to stable behaviour in shallow water to a
kh value of 1.2. The result of errors of this type on the shoreward evolution of wave
groups in intermediate water depths has not been extensively explored in the literature
on Boussinesq equations, and would be a worthy topic for further investigation.

Properties of solitary waves were obtained numerically and were compared to exact
results and the first three levels of approximation in the theory of Shields & Webster
(1988). The resulting FN4 model is found to have comparable accuracy to the GN3
or third level of approximation except for a slight underprediction of phase speeds
for high-amplitude solitary waves.

Algorithms for the numerical solution of the present FN4 model are described in
Gobbi & Kirby (1999), where the model is applied to the study of wave shoaling
and harmonic generation in the problem of waves propagating over an isolated step.
Results for this case have been further compared to results from the local polynomial
approximation method of Kennedy & Fenton (1997) in Gobbi, Kennedy & Kirby
(1998).

This work was supported by the Army Research Office through University Research
Initiative Grant DAAL 03-92-G-0116, and by the Brazilian agency Fundação Capes.

Appendix A. Application of Nwogu’s (1993) method at O(µ4)

The procedure of Nwogu (1993) rests on choosing the potential or velocity at an
elevation zα in the water column such that the resulting linear dispersion relationship
of the model is optimal in some sense. As pointed out by Dingemans (1997), this
procedure does not produce the desired (4,4) Padé level of approximation discussed
in the text. The dispersion relationship in a model retaining terms to O(µ2) is given
by

ω2 =
1− (α+ 1

3
)µ2

1− αµ2
, (A 1)

where

α = 1
2
z2
α + zα. (A 2)

The choice α = − 2
5

reproduces the (2,2) Padé approximant, while the choice α = −0.39
proposed by Nwogu minimizes the error (in a least-square sense) in the dispersion
relation over the range 0 6 µ 6 π.
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Following Nwogu’s procedure, we extend the approximate expression for the veloc-
ity potential (in terms of φα) to O(µ4) and obtain

φ = φα + 1
2
µ2
[
(1 + zα)

2 − (1 + z)2
]∇2φα

+ 1
24
µ4
[
5(1 + zα)

4 − 6(1 + zα)
2(1 + z)2 + (1 + z)4

]∇2∇2φα + O(µ6). (A 3)

This expression is used in linearized versions of (5) and (3) to obtain the linear model

ηt + ∇2φα + µ2(α+ 1
3
)∇2∇2φα + µ4(5α2 + 4α+ 4

5
)∇2∇2∇2φα = 0, (A 4)

η + φαt + µ2α∇2φαt + µ 1
6
α(2 + 5α)∇2∇2φαt = 0. (A 5)

The corresponding linearized dispersion relation is given by

ω2 =
1− (α+ 1

3
)µ2 + (5α2 + 4α+ 4

5
)α4

1− αµ2 + ( 5
6
α2 + α/3)µ4

. (A 6)

This is equivalent to Nwogu’s result if terms of O(µ4) are dropped. The resulting
dispersion relation contains only a single parameter, and there is no choice of α which
reproduces the desired (4,4) Padé approximant. Dingemans (1997) shows results for
the choice α = − 4

9
, which corresponds to reproducing the coefficients of the O(µ2)

terms in (7).

Appendix B. Expressions appearing in § 4 equations

σ1 =
−P22

ωQ1Q2

[
4 + 16C1µ

2 − ω−2(1 + 4C3µ
2 + 16C4µ

4)
]

− ω

2Q1

(E20 + E22)(µ+ C1µ
3 − ω−2µ−1Q1)

+
P22

4µ2ω3Q2
1Q2

[
1 + (2 + 5C3)µ

2 + (10C1 + 17C4 + 4C2
3 )µ4

]
− 3

16Q1

[
1 + C3µ

2 − ω−2(1 + C1µ
2)
]

+
1

ωQ2
1

[
4 + (8C3 + 1/6)µ2

]
, (B 1)

σ2 =

(
(1/2ωµ2)− CgQ3

)
2(C2

g − 1)

[
Cg

ωQ1

{
Q1 − µ2(1 + C1µ

2)
}

+

(
1 +

1

Q1

)]
, (B 2)

where

Q1 = 1 + C3µ
2 + C4µ

4, (B 3)

Q2 = 4(1 + ω−2)(1 + 4C1µ
2 + 4C4µ

4), (B 4)

Q3 =
1

2Q1

{1− C1µ
2}+

1

4ω2Q2
1µ

2
{1 + (2C3 + 1)µ2 + (2C4 + C2

3 + 2C1)µ
4}, (B 5)

P22 = −2
[
Q1 − µ2(1 + C1µ

2)
]− Q−1

1

[
2Q1 − 1− µ2 − (2C1 − C2

3 )µ4
]
, (B 6)

E20 =
µ

2Q1

(1 + C1µ
2)− 1

µω2Q2
1

[
2Q1 − 1 + µ2 + (2C1 + C2

3 )µ4
]
, (B 7)
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E22 =
1

2ω2Q2Q1

P22(1 + 4C3µ
2 + 16C4µ

4)

+
µ

4Q1

(1 + C1µ
2)− 1

µω2Q2
1

[
2Q1 − 1− µ2 + (2C1 − C2

3 )µ4
]
, (B 8)

C1–C4 are given in (20)–(23). The corresponding σ1 and σ2 for the full boundary value
problem are given by

σ1 =
cosh 4µ+ 8− 2 tanh2 µ

16 sinh4 µ
, (B 9)

σ2 =
1

2ω(C2
g − 1)

(
1 +

Cg

2ω cosh2 µ

)2

. (B 10)

REFERENCES

Boussinesq, J. 1871 Theorie de l’intumescence liquide appelee onde solitaire ou de translation se
propageant dans un canal retangulaire. C. R. Acad Sci. Paris 72, 755–759.

Chen, Q. R., Dalrymple, A., Kirby, T., Kennedy, A. & Haller, M. C. 1999 Boussinesq modelling
of a rip current system. J. Geophys. Res. 104, 20617–20637.

Chen, Y. & Liu, P. L.-F. 1995 Modified Boussinesq equations and associated parabolic models for
water wave propagation. J. Fluid Mech. 288, 351–381.

Dingemans, M. 1973 Water wave over uneven bottom; a discussion of long wave equations. Rep.
R729, part 2. Delft Hydraulics.

Dingemans, M. 1997 Water Wave Propagation over Uneven Bottoms. World Scientific.

Fenton, J. D. 1972 A ninth-order solution for the solitary wave. J. Fluid Mech. 53, 237–246.

Gobbi, M. F. 1998 A new Boussinesq-type model for surface water wave propagation. Dissertation,
University of Delaware.

Gobbi, M. F., Kennedy, A. B. & Kirby, J. T. 1998 A comparison of higher-order Boussinesq and
local polynomial approximation models. Proc. 26th Intl Conf. Coastal Engng (ed. B. Edge),
pp. 631–644. ASCE.

Gobbi, M. F. & Kirby, J. T. 1999 Wave evolution over submerged sills: Tests of a high-order
Boussinesq model. Coast. Engng 37, 57–96.

Green, A. E. & Naghdi, P. M. 1976 A derivation of equations for wave propagation in water of
variable depth. J. Fluid Mech. 78, 237–246.

Grimshaw, R. 1971 The solitary wave in water of variable depth. J. Fluid Mech. 86, 415–431.

Hasselmann, K. 1962 On the nonlinear energy transfer in a gravity wave spectrum. J. Fluid Mech. 12,
481–500.

Kennedy, A. B. & Fenton, J. D. 1997 A fully-nonlinear computational method for wave propagation
over topography. Coast. Engng 32, 137–161.

Kirby, J. T. 1997 Gravity waves on water of variable depth. In Advances in Fluid Mechanics, 10
(ed. J. N. Hunt), pp. 55–125. Computational Mechanics Publications.

Kirby, J. T. & Wei, G. 1994 Derivation and properties of a fully nonlinear, extended Boussinesq
model. In Proc. IAHR Symposium: Waves – Physical and Numerical Modelling, pp. 386–395.

Korteweg, D. J. & Vries, G. de 1895 On the change of form of long waves advancing in a
rectangular canal and on a new type of long stationary wave. Phil. Mag. (5) 39, 422–443.

Laitone, E. V. 1960 The second approximation to cnoidal and solitary waves. J. Fluid Mech. 9,
430–444.

Longuet-Higgins, M. S. & Fenton, J. D. 1974 On the mass, momentum, energy and circulation
of a solitary wave. Proc. R. Soc. Lond. A 340, 471–493.
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